MathVantage		als - Exam 2	Exam Number: 131		
	PART 1	QUESTIONS			
Name:	Ag	e: Id:	Course:		
Integrals	s - Exam 2	Lesson: 4-6			
Instructions	1	Exam Strategies to g	get the best performance:		
• Please begin by printing your Name, your Age,		• Spend 5 minutes reading your exam. Use this time			
your Student Id, and your Course Name in the box		to classify each Question in (E) Easy, (M) Medium,			
above and in the box on the sol	ution sheet.	and (D) Difficult.			
• You have 90 minutes (class period) for this exam.		• Be confident by solving the easy questions first then the medium questions.			
• You can not use any calculator,	computer,	1			
cellphone, or other assistance device on this exam.		• Be sure to check each solution. In average, you			
However, you can set our flag to ask permission to		only need 30 seconds to test it. (Use good sense).			
consult your own one two-side	d-sheet notes at any				
point during the exam (You can write concepts,		• Don't waste too much time on a question even if			
formulas, properties, and procedures, but questions		you know how to solve it. Instead, skip the			
and their solutions from books or previous exams		question and put a circle around the problem			
are not allowed in your notes).		number to work on it l	ater. In average, the easy and		
		medium questions take	e up half of the exam time.		
• Each multiple-choice question	is worth 5 points				

- Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.
- Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

• Set up your flag if you have a question.

some points).

and each extra essay-question is worth from 0 to 5

points. (Even a simple related formula can worth

1. Given:

I. The Table of Integrals and Substitution are the first attempts to solve integrals.

II. The integration by parts is a powerful technique to solve a much larger set of functions.

III. The Column Method is a practical and an easy way to solve Integration by Parts.

- a) Only I and II are correct.
- b) Only I and III are correct.
- c) Only II and III are correct.
- d) I, II, and III are incorrect.
- e) I, II, and III are correct.

2. Let *u* and *v* be any real functions.

The formula of Integral by Parts is:

a)
$$\int u dv = -uv + \int v du.$$

b)
$$\int u dv = uv + \int v du.$$

c)
$$\int u dv = -uv - \int v du.$$

d)
$$\int u dv = uv - \int v du.$$

- e) None of the above.
- 3. What is important about the Integration by Parts:
- I. It is a powerful technique to solve a much larger set of functions.
- II. To solve the integral $\int u \, dv$ using the Integration by

Parts, students should to identify u and dv properly to converge to an easier Integral.

III. To solve the integral u dv, students should first to

compute *du* and *v* to use in the Integral by Parts formula.

Then:

- a) Only I and II are correct.
- b) Only I and III are correct.
- c) Only II and III are correct.
- d) I, II, and III are correct.
- e) None of the above.

4. What is important to know about the integral by parts methodologies:

- a) The Standard Method solution is easier than the Column Method to solve integrals by parts.
- b) The Column Method is the most used in all universities around the world and the Standard Method will be no longer be used.
- c) The Column Method solve complex integrals, but it requires a lot of time to be used in exams.
- d) The standard Method formula to solve integral by parts could be applied several times to find an easier integral. In the other hand, the Column Method can be used as a guide to get faster and the same solution offered by the Standard Method in an organized and compact table.
- e) The Column Method is prohibited to be used in certain universities because several professors don't knowing it.

5. To solve the integral u dv by integration by parts

effectively, students should to identify the function *u* properly.

Given the notation:

E-Exponential, T-Trigonometric, L-Logarithmic, P-Polynomial. A rule of thumb to choose smartly the function u is:

- a) LPTE
- b) LTPE
- c) EPTL
- d) ETPL
- e) ETLP

6. Solve the following integral:

$$I = \int_0^1 dx$$

a)
$$\frac{1}{5}$$
 b) $\frac{1}{4}$ c) $\frac{1}{3}$ d) $\frac{1}{2}$ e) 1

7. Solve the following integral:

 $I = \int e^{x^4} x^3 dx$ a) $I = \frac{1}{2} e^{x^2} + c$ b) $I = \frac{1}{3} e^{x^3} + c$

- c) $I = \frac{1}{4}e^{x^4} + c$ d) $I = \frac{1}{5}e^{x^5} + c$
- e) None of the above.

8. Solve the following integral:

$$I = \int e^x x^3 \, dx$$

a) $I = xe^x - e^x + c$

b)
$$I = -xe^x - e^x + c$$

c)
$$I = x^2 e^x - 2x e^x + 2e^x + c$$

- d) $I = x^3 e^x 3x^2 e^x + 6x e^x 6e^x + c$
- e) None of the above.
- 9. Solve the following integral:

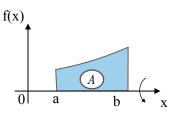
$$I = \int x^3 \cos x \, dx$$

- a) $I = -x \cos x + \sin x + c$
- b) $I = x \sin x + \cos x + c$
- c) $I = -x^2 \cos x + 2x \sin x + 2 \cos x + c$
- d) $I = x^2 \sin x + 2x \cos x 2 \sin x + c$
- e) None of the above.

10. Solve the following integral:

$$I = \int x^3 \ln x \, dx$$

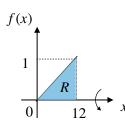
a)
$$I = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c$$


- b) $I = x \sin x + \cos x + c$
- c) $I = -x^2 \cos x + 2x \sin x + 2 \cos x + c$
- d) $I = x^2 \sin x + 2x \cos x 2 \sin x + c$
- e) None of the above.
- 11. Solve the following integral:

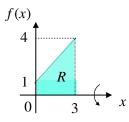
$$I = \int \cos x e^{-x} dx$$

a)
$$I = \frac{\sin x e^x}{4} - \frac{\cos x e^x}{4} + c$$

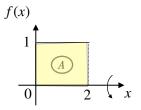
b) $I = -\frac{\sin x e^{-x}}{4} + \frac{\cos x e^{-x}}{4} + c$
c) $I = \frac{\cos x e^x}{4} + \frac{\sin x e^x}{4} + c$
d) $I = -\frac{\cos x e^{-x}}{4} + \frac{\sin x e^{-x}}{4} + c$


e) None of the above.

12. Rotating an area $(A \neq 0)$ over the x- axis we have:

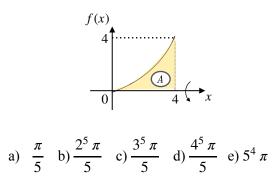

a) Point b) Line c) Area d) Volume e) Empty space.

13. Find the volume (V) generated by rotating the following regions (R) over the x- axis. Given $f(x) = \frac{x}{12}$.

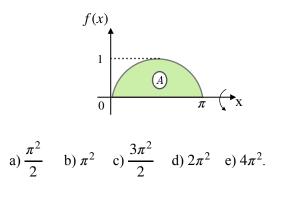


a) π b) 2π c) 3π d) 4π e) None of the above.

14. Find the volume (*V*) generated by rotating the following region (*R*) over the x- axis. Given f(x) = x + 1.



a) 21π b) 114π c) 333π d) 732π e) None of the above. 15. Find the volume (*V*) generated by rotating the following area (*A*) over the x- axis. Given f(x) = 1.



a) π b) 2π c) 3π d) 4π e) None of the above.

16. Find the volume (V) generated by rotating the following area (A) over the x- axis. Given $f(x) = x^2$.

17. Find the volume (V) generated by rotating the following area (A) over the x- axis. Given $f(x) = \sin x$.

18. Find
$$I = \int_0^1 e^{\ln x} dx$$
.

a)
$$\frac{1}{4}$$
 b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) 2. e) None of the above.

19. Find
$$I = \int_{0}^{\frac{\pi}{4}} 2\sin x \cos x \, dx$$
.
a) $\frac{1}{6}$ b) $\frac{1}{5}$ c) $\frac{1}{4}$ d) $\frac{1}{3}$. e) None of the above

20. The group of functions whose their derivatives is the same that their Integrals is:

- a) $f(x) = Ce^x$, where $C \in \mathbb{R}$.
- b) $f(x) = C \ln x$, where $C \in \mathbb{R}$.
- c) f(x) = Cx, where $C \in \mathbb{R}$.
- d) $f(x) = C \sin x$, where $C \in \mathbb{R}$.
- e) None of the above.

Integrals - Exam 2

Consulting

PART 2: SOLUTIONS

Name:_____

Age:____ Id:_____

Course:_____

Multiple-Choice Answers

Questions	Α	в	с	D	Е
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Let this section in blank

	Points	Max
Multiple Choice		100
Extra Points		25
Consulting		10
Age Points		25
Total Performance		160
Grade		Α

Extra Questions

21. The famous theorem of Pappus states that the volume V of a solid of revolution generated by the revolution of a area A over the x axis is equal to:

$$V = 2\pi dA,$$

where d is the distance between x-axis and the centroid of the area A.

Show that the area for a cylinder is $V = \pi r^2 h$.

Hint:
$$d = \frac{r}{2}$$
.

6

22. Show that:

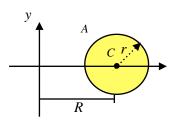
 $\int \ln x \, dx = \ln x - x + c, \text{ where } x > 0.$

23. Find
$$I = \int x^2 \cdot x \, dx$$
.

a) Standard Method

b) Column Method

Note: Each method is 5 points.


25. Pappus's formula challenge.

The famous theorem of Pappus states that the volume V of a solid of revolution generated by the revolution of a area A over the x axis is equal to:

$$V = 2\pi dA,$$

where d is the distance between x-axis and the centroid of the area A.

Find the Torus volume by rotating a circle (radius = r) over *y*-axis. Given the distance between the center and the *y*-axis is *R*.

Note: If you draw a happy face, you will receive anyway an extra 5 points.

24. Find
$$I = \int_{e}^{\pi} x \, dx$$
.